

Overview

•Temperature to resistance relation

Pure metal

Temperature Calculation

Resistance Ratio:

((R @ 100° C) - (R @ 0° C))/(R @ 0°C)

- Metals with higher resistance ratios and higher resistances at 0°C give greater accuracy

Error:

Lead wire resistance / [((R @ 100° C) - (R @ 0° C))*0.01]

- Select material based on necessary error for application

Temperature Calculation

- Resistance Ratio defines the average slope of the curve relating resistance and temperature from 0 $^\circ$ C to 100 $^\circ$ C

- Often, for other ranges, the curve is no longer linear (produces error calculation)
- Use resistance ratio to calculate approximate value, then use error to calculate tolerance range
- Range of linearity defines the class of RTD
- Tables and graphs give accurate values for reference
- Callendar Van Dusen Equations give greater accuracy

Materials

RTD type	Maximum measurement range	Long term stability	Corrosion resistance	Temperature vs. resistance linearity	Typical resistance at 0℃	Typical resistance at 100°C	Change in resistance 0100°C	Resistance ratio (R100-R ₀)/ R ₀	Alpha (α) (R100-R ₀)/(100 × R ₀)
Platinum	-200850°C	Excellent	Excellent	Good	100 0	138.5 Q	38.5 Q	0.385	0.00385
Nickel	-80260°C	Fair	Good	Fair	120 Q	200.64 0	80.64 Q	0.672	0.00672
Copper	-200260°C	Good	Fair	Excellent	9.035 Q	12.897 Q	3.86 Q	0.427	0.00427
									PR

Sources of Error

- At high temperatures, the resistivity of some materials can change

- Must make design considerations at high temperatures such as protecting it with a probe made of a ceramic

Applications

RTD	Thermocouple	Thermistor
to 850°C to 1562°F)	-270 to 1800℃ (-454 to 3272°F)	-80 to 150°C (-112 to 302°F) (typical)
rate	Low	Low
rate	High	Moderate
	Low	Moderate
rate	Low	Best
	Moderate	Poor
eral purpose ing lest accuracy perature aging	Highest temperatures	 Best sensitivity Narrow ranges (e.g. medical) Point sensing
	perature aging	aging

